A conditional independence test for dependent data based on maximal conditional correlation
نویسندگان
چکیده
منابع مشابه
Towards Conditional Independence Test for Relational Data
Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are independently and identically distributed (i.i.d.). However, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generalization of CI to the relational s...
متن کاملA Permutation-Based Kernel Conditional Independence Test
Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...
متن کاملA Kernel Conditional Independence Test for Relational Data
Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are independently and identically distributed (i.i.d.). However, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generalization of CI to the relational s...
متن کاملA Scalable Conditional Independence Test for Nonlinear, Non-Gaussian Data
Many relations of scientific interest are nonlinear, and even in linear systems distributions are often non-‐Gaussian, for example in fMRI BOLD data. A class of search procedures for causal relations in high dimensional data relies on sample derived conditional independence decisions. The most common applications rely on Gaussian tests that can be systematically erroneous in nonlinear non-‐Ga...
متن کاملSelf-Discrepancy Conditional Independence Test
Tests of conditional independence (CI) of random variables play an important role in machine learning and causal inference. Of particular interest are kernel-based CI tests which allow us to test for independence among random variables with complex distribution functions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2012
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2012.01.017