A conditional independence test for dependent data based on maximal conditional correlation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Conditional Independence Test for Relational Data

Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are independently and identically distributed (i.i.d.). However, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generalization of CI to the relational s...

متن کامل

A Permutation-Based Kernel Conditional Independence Test

Determining conditional independence (CI) relationships between random variables is a challenging but important task for problems such as Bayesian network learning and causal discovery. We propose a new kernel CI test that uses a single, learned permutation to convert the CI test problem into an easier two-sample test problem. The learned permutation leaves the joint distribution unchanged if a...

متن کامل

A Kernel Conditional Independence Test for Relational Data

Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are independently and identically distributed (i.i.d.). However, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generalization of CI to the relational s...

متن کامل

A Scalable Conditional Independence Test for Nonlinear, Non-Gaussian Data

Many relations of scientific interest are nonlinear, and even in linear systems distributions are often non-­‐Gaussian, for example in fMRI BOLD data. A class of search procedures for causal relations in high dimensional data relies on sample derived conditional independence decisions. The most common applications rely on Gaussian tests that can be systematically erroneous in nonlinear non-­‐Ga...

متن کامل

Self-Discrepancy Conditional Independence Test

Tests of conditional independence (CI) of random variables play an important role in machine learning and causal inference. Of particular interest are kernel-based CI tests which allow us to test for independence among random variables with complex distribution functions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2012

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2012.01.017